Magnitude and sign correlations in heartbeat fluctuations.
نویسندگان
چکیده
We propose an approach for analyzing signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that signals with identical long-range correlations can exhibit different time organization for the magnitude and sign. We find that the magnitude series relates to the nonlinear properties of the original time series, while the sign series relates to the linear properties. We apply our approach to the heartbeat interval series and find that the magnitude series is long-range correlated, while the sign series is anticorrelated and that both magnitude and sign series may have clinical applications.
منابع مشابه
Quantifying Heartbeat Dynamics by Magnitude and Sign Correlations
We review a recently developed approach for analyzing time series with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that time series with identical long-range correlations can exhibit different time organization for the magnitude and sign. We apply our approach to series of time intervals betwee...
متن کاملLevels of complexity in scale-invariant neural signals.
Many physical and physiological signals exhibit complex scale-invariant features characterized by 1/f scaling and long-range power-law correlations, indicating a possibly common control mechanism. Specifically, it has been suggested that dynamical processes, influenced by inputs and feedback on multiple time scales, may be sufficient to give rise to 1/f scaling and scale invariance. Two example...
متن کاملCharacterization of sleep stages by correlations in the magnitude and sign of heartbeat increments.
We study correlation properties of the magnitude and the sign of the increments in the time intervals between successive heartbeats during light sleep, deep sleep, and rapid eye movement (REM) sleep using the detrended fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong during deep sleep, weaker during light sleep, and even weaker during R...
متن کاملTITLE PAGE Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with advanced age: A new mechanistic picture of cardiac control in healthy elderly Fractal and nonlinear stability of cardiac dynamics with aging
BackgroundHeartbeat fluctuations exhibit temporal structure with robust long-range correlations, fractal and nonlinear features, which have been found to break down with pathologic conditions, reflecting changes in the mechanism of neuroautonomic control. It has been hypothesized that these features change and even break down also with advanced age, suggesting fundamental alterations in cardiac...
متن کاملMultiscale aspects of cardiac control
We report some recent attempts to understand the dynamics of complex physiologic fluctuations by adapting and extending concepts and methods developed very recently in statistical physics. We first review recent progress using wavelet-based multifractal analysis, magnitude and sign decomposition analysis and a new segmentation algorithm to quantify multiscale features of heartbeat interval seri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 86 9 شماره
صفحات -
تاریخ انتشار 2001